Anti-Derivatives

Example

1. Find an antiderivative of $\frac{1}{2 x}$.

Solution: By the constant integration law, we know that an antiderivative of $\frac{1}{2 x}$ is half an antiderivative of $\frac{1}{x}$, thus it suffices to find an antiderivative of $\frac{1}{x}=x^{-1}$. Ideally, we would take $\frac{x^{n+1}}{n+1}$ for an antiderivative of x^{n}, but $-1+1=0$ so we cannot use the power antiderivative rule. But, we remember that the derivative of $\ln x$ is $\frac{1}{x}$. So, an antiderivative of $\frac{1}{2 x}$ is $\frac{\ln x}{2}$.
2. True FALSE Just like differentiation where we can use the chain rule/product rule/quotient rule/etc. to always be able to find the derivative of a function, we can find similar rules to do the same with finding an antiderivative.
3. True FALSE There exists a unique anti-derivative.

Problems

4. Find an antiderivative of $5 e^{x}$.

Solution: An antiderivative of e^{x} is e^{x} and so by the constant integration law, an antiderivative of $5 e^{x}$ is $5 e^{x}$.
5. Find an antiderivative of $x+\sqrt{x}$.

Solution: An antiderivative of x is $\frac{x^{2}}{2}+5$ and an antiderivative of $\sqrt{x}=x^{1 / 2}$ is $\frac{2}{3} x^{3 / 2}+10$ and so by the addition integration law, an antiderivative of $x+\sqrt{x}$ is $\frac{x^{2}}{2}+\frac{2}{3} x^{3 / 2}+15$.
6. Find an antiderivative to $8 t^{3}+15 t^{2}$.

Solution: An antiderivative of t^{3} is $\frac{t^{4}}{4}$ and an antiderivative of t^{2} is $\frac{t^{3}}{3}+\pi$. So using the constant and addition antiderivative law, we get that an antiderivative of $8 t^{3}+15 t^{2}$ is $8 \frac{t^{4}}{4}+15 \frac{t^{3}}{3}+15 \pi=2 t^{4}+5 t^{3}+15 \pi$.
7. Find an antiderivative to e.

Solution: We can write $e=e \cdot x^{0}$. An antiderivative to x^{0} is $x+1$ so by the constant antiderivative law, an antiderivative to e is $e(x+1)=e x+e$.
8. Find an antiderivative to $\cos u$.

Solution: One choice is $\sin u+5$.
9. Find an antiderivative to $\sin (2 t)$.

Solution: We want to guess $-\cos (2 t)$ but the derivative of $-\cos (2 t)$ is $\sin (2 t) \cdot 2$ by the chain rule. So we can multiply by one half to get a function that works. So one choice is $\frac{-\cos (2 t)}{2}$.

Riemann Sums

Example

10. Using 5 right endpoints, estimate the area under $\frac{1}{x}$ on the interval $[1,6]$.

Solution: Each rectangle will have a length of $\frac{6-1}{5}=1$ and so the total area is $\frac{1}{2} \cdot 1+\frac{1}{3} \cdot 1+\cdots+\frac{1}{6} \cdot 1=\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{6}$.
11. TRUE False The first derivative can tell you if a right endpoint Riemann sum is an overestimate or underestimate.
12. True FALSE Left and right endpoint are the only kind of Riemann sums.

Problems

13. Using 5 left endpoints, estimate the area under $\frac{1}{x}$ on the interval $[1,6]$.

Solution: Each rectangle will have a length of $\frac{6-1}{5}=1$ and so the total area is $\frac{1}{1} \cdot 1+\frac{1}{2} \cdot 1+\cdots+\frac{1}{5} \cdot 1=\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{5}$.
14. Using 6 left endpoints, estimate the area under $\frac{1}{x}$ on the interval $[1,4]$.

Solution: Each rectangle will have a length of $\frac{4-1}{6}=\frac{1}{2}$ and so the total area is $\frac{1}{1} \cdot \frac{1}{2}+\frac{1}{3 / 2} \cdot \frac{1}{2}+\cdots+\frac{1}{7 / 2} \cdot \frac{1}{2}=\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{7}$.
15. Using 6 right endpoints, estimate the area under $\frac{1}{x}$ on the interval $[1,4]$.

Solution: Each rectangle will have a length of $\frac{4-1}{6}=\frac{1}{2}$ and so the total area is $\frac{1}{3 / 2} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2}+\cdots+\frac{1}{4} \cdot \frac{1}{2}=\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{8}$.

